RCCL Documentation
Release 0.8

Advanced Mirco Devices

Jul 02, 2020

CONTENTS:

1 RCCL 1
1.1 Introduction L e e 1
2 API 3
2.1 Communicator Functions e e 3
2.2 Collective Communication Operations it 4
23 Group SemantiCs e e e e e e e e e e e e e e e 6
24 Library Functions e e e e 6
2.5 TYPES v v o e e e e e e e e e e e e e e 6
2.6 Enumerationso e e e e e e e e e e e e e 7
3 AllAPI 9
4 Indices and tables 15
Index 17

CHAPTER
ONE

RCCL

1.1 Introduction

The RCCL is an AMD port of NCCL.

RCCL Documentation, Release 0.8

2 Chapter 1. RCCL

CHAPTER
TWO

API

This section provides details of the library API

2.1 Communicator Functions

ncclResult_t ncclGetUniquelId (ncclUniqueld *uniqueld)
Generates an ID for ncclCommlInitRank.

Generates an ID to be used in ncclCommlInitRank. ncclGetUniqueld should be called once and the Id should be
distributed to all ranks in the communicator before calling ncclCommlInitRank.

Parameters

* [in] uniqueId: ncclUniqueld* pointer to uniqueld

ncclResult_t ncclCommInitRank (ncclComm_t *comm, int nranks, ncclUniqueld commld, int rank)
Creates a new communicator (multi thread/process version).

rank must be between O and nranks-1 and unique within a communicator clique. Each rank is associ-
ated to a CUDA device, which has to be set before calling ncclCommlInitRank. ncclCommlInitRank im-
plicitly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroup-
Start/ncclGroupEnd.

Parameters

* [in] comm: ncclComm_t* communicator struct pointer

ncclResult t neelCommInitAll (ncclComm_t *comm, int ndev, const int *devlist)
Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of ndev newly
initialized communicators in comm. comm should be pre-allocated with size at least ndev*sizeof(ncclComm_t).
If devlist is NULL, the first ndev HIP devices are used. Order of devlist defines user-order of processors within
the communicator.

ncclResult_t necclCommDestroy (ncclComm_t comm)
Frees resources associated with communicator object, but waits for any operations that might still be running on
the device.

ncclResult_t neclCommAbort (ncclComm_t comm)
Frees resources associated with communicator object and aborts any operations that might still be running on
the device.

RCCL Documentation, Release 0.8

ncelResult t neelCommCount (const ncclComm_t comm, int *count)
Gets the number of ranks in the communicator clique.

ncclResult_t necelCommCuDevice (const ncclComm_t comm, int *device)
Returns the rocm device number associated with the communicator.

ncelResult t neclCommUserRank (const ncclComm_t comm, int *rank)
Returns the user-ordered “rank” associated with the communicator.

2.2 Collective Communication Operations

Collective communication operations must be called separately for each communicator in a communicator clique.
They return when operations have been enqueued on the hipstream.

Since they may perform inter-CPU synchronization, each call has to be done from a different thread or process, or
need to use Group Semantics (see below).

ncclResult_t ncclReduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,

ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t stream)
Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff may be NULL on all
calls except for root device. root is the rank (not the CUDA device) where data will reside after the operation is
complete.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t ncclBeast (void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm, hip-

Stream_t stream)
(deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data resides
before the operation is started.

This operation is implicitely in place.

ncclResult_t ncclBroadcast (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Broadcast.

Copies count values from root to all other devices. root is the rank (not the HIP device) where data resides
before the operation is started.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t ncclAl1lReduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t

datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)
All-Reduce.

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result on each
recvbuff.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t ncclReduceScatter (const void *sendbuff, void *recvbuff, size_t recvcount, nc-
clDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hip-

Stream_t stream)
Reduce-Scatter.

4 Chapter 2. API

RCCL Documentation, Release 0.8

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that recvbuff
on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount, which means
that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

ncclResult_t necclAllGather (const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t

datatype, ncclComm_t comm, hipStream_t stream)
All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of
at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

ncclResult_t ncelSend (const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t

comm, hipStream_t stream)
Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the same
count from this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress concur-
rently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

ncclResult_t necclRecv (void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm,
hipStream_t stream)

ncclResult_t ncclGather (const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Gather.

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
1*sendcount.

Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least
nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

ncclResult_t ncclScatter (const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root.

Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least
nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

ncclResult_t necclA11ToAll (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,

ncclComm_t comm, hipStream_t stream)
All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for sending/receiving
has count elements, which means that recvbuff and sendbuff should have a size of nranks*count elements.

In-place operation will happen if sendbuff == recvbuff.

2.2. Collective Communication Operations 5

RCCL Documentation, Release 0.8

2.3 Group Semantics

When managing multiple GPUs from a single thread, and since NCCL collective calls may perform inter-CPU syn-
chronization, we need to “group” calls for different ranks/devices into a single call.

Grouping NCCL calls as being part of the same collective operation is done using ncclGroupStart and ncclGroupEnd.
ncclGroupStart will enqueue all collective calls until the ncclGroupEnd call, which will wait for all calls to be com-
plete. Note that for collective communication, ncclGroupEnd only guarantees that the operations are enqueued on the
streams, not that the operation is effectively done.

Both collective communication and ncclCommInitRank can be used in conjunction of ncclGroupStart/ncclGroupEnd.

ncclResult_t ncclGroupStart ()
Group Start.

Start a group call. All calls to NCCL until ncclGroupEnd will be fused into a single NCCL operation. Nothing
will be started on the CUDA stream until ncclGroupEnd.

ncclResult_t ncclGroupEnd ()
Group End.

End a group call. Start a fused NCCL operation consisting of all calls since ncclGroupStart. Operations on the
CUDA stream depending on the NCCL operations need to be called after ncclGroupEnd.

2.4 Library Functions

ncelResult t neclGetVersion (int *version)
Return the NCCL_VERSION_CODE of the NCCL library in the supplied integer.

This integer is coded with the MAJOR, MINOR and PATCH level of the NCCL library

const char *ncclGetErrorString (ncclResult_t result)
Returns a human-readable error message.

2.5 Types

There are few data structures that are internal to the library. The pointer types to these structures are given below. The
user would need to use these types to create handles and pass them between different library functions.

typedef struct ncclComm *ncclComm_t
Opaque handle to communicator.

struct ncclUniqueId

6 Chapter 2. API

RCCL Documentation, Release 0.8

2.6 Enumerations

This section provides all the enumerations used.

enum ncclResult_t
Error type.

Values:

enumerator ncclSuccess =0(

enumerator ncclUnhandledCudaError =1
enumerator ncclSystemError =2
enumerator ncclInternalError =3
enumerator ncclInvalidArgument =4
enumerator ncclInvalidUsage =5
enumerator ncclNumResults =06

enum ncclRedOp_t
Reduction operation selector.

Values:

enumerator ncclSum=0
enumerator ncclProd=1
enumerator ncclMax =2
enumerator ncclMin=3

enumerator ncclNumOps =4

enum ncclDataType t
Data types.

Values:

enumerator ncclInt8 =0
enumerator ncclChar =0
enumerator ncclUint8=1
enumerator ncclInt32=2
enumerator ncclInt =2
enumerator ncclUint32=3
enumerator ncclInt64 =4
enumerator ncclUint64 =35
enumerator ncclFloatl6=06
enumerator ncclHalf=6
enumerator ncclFloat32=7
enumerator ncclFloat =7

enumerator ncclFloat64 =238

2.6. Enumerations 7

RCCL Documentation, Release 0.8

enumerator ncclDouble =8
enumerator ncclBfloatl6=9

enumerator ncclNumTypes = 10

8 Chapter 2. API

CHAPTER
THREE

ALL API

struct ncclUniqueld

Public Members

char internal[NCCL_UNIQUE_ID_BYTES]

filencel.h
#include <hip/hip_runtime_api.h>#include <hip/hip_fp16.h>

Defines

NCCL_MAJOR
NCCL_MINOR
NCCL_PATCH
NCCL_SUFFIX
NCCL_VERSION_CODE
NCCL_VERSION (X, Y, Z)
RCCL_BFLOAT16
RCCL_GATHER_SCATTER

NCCL_UNIQUE_ID_BYTES

Typedefs

typedef struct ncclComm *ncclComm t
Opaque handle to communicator.

RCCL Documentation, Release 0.8

Enums

Error type.
Values:
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator

enumerator

enum ncclResult_t

ncclSuccess =0
ncclUnhandledCudaError =1
ncclSystemError =2
ncclInternalError =3
ncclInvalidArgument =4
ncclInvalidUsage =5
ncclNumResults =6

enum ncclRedOp_t

Reduction operation selector.

Values:

enumerator
enumerator
enumerator
enumerator

enumerator

Data types.
Values:
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator
enumerator

enumerator

nceclSum=0
ncclProd =1
ncclMax =2

ncclMin=3

ncclNumOps =4

enum ncclDataType_ t

nceclInt8=0
ncclChar=0

nceclUint8 =1

nceclInt32=2

nceclInt =2

ncelUint32 =3
ncclInt64 =4
ncclUint64 =5

ncclFloatlé6=6

ncclHalf =6

ncclFloat32 =7
ncclFloat =7
ncclFloat64 =8
ncclDouble =8

ncclBfloatl6 =9

10

Chapter 3. All API

RCCL Documentation, Release 0.8

enumerator ncclNumTypes = 10

Functions
ncclResult_t ncclGetVersion (int *version)
Return the NCCL_VERSION_CODE of the NCCL library in the supplied integer.
This integer is coded with the MAJOR, MINOR and PATCH level of the NCCL library
ncclResult_t pnecclGetVersion (int *version)

ncclResult_t ncelGetUniquelId (ncclUniqueld *uniqueld)
Generates an ID for ncclCommlInitRank.

Generates an ID to be used in ncclCommlInitRank. ncclGetUniqueld should be called once and the Id
should be distributed to all ranks in the communicator before calling ncclCommlInitRank.
Parameters

* [in] uniqueId: ncclUniqueld* pointer to uniqueld

ncclResult_t pneeclGetUniquelId (ncclUniqueld *uniqueld)

ncclResult_t neelCommInitRank (ncclComm_t *comm, int nranks, ncclUniqueld commld, int rank)
Creates a new communicator (multi thread/process version).

rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated
to a CUDA device, which has to be set before calling ncclCommlInitRank. ncclCommlInitRank implic-
itly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroup-
Start/ncclGroupEnd.

Parameters

* [in] comm: ncclComm_t* communicator struct pointer

ncclResult_t pneclCommInitRank (ncclComm_t *comm, int nranks, ncclUniqueld commld, int rank)

ncclResult t neelCommInitAll (ncclComm_t *comm, int ndev, const int *devlist)
Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of
ndev newly initialized communicators in comm. comm should be pre-allocated with size at least
ndev*sizeof(ncclComm_t). If devlist is NULL, the first ndev HIP devices are used. Order of devlist
defines user-order of processors within the communicator.

ncclResult_t pneelCommInitAll (ncclComm_t *comm, int ndev, const int *devlist)

ncclResult_t ncclCommDestroy (ncclComm_t comm)
Frees resources associated with communicator object, but waits for any operations that might still be
running on the device.

ncclResult_t pneclCommDestroy (ncclComm_t comm)

ncclResult_t neelCommAbort (ncclComm_t comm)
Frees resources associated with communicator object and aborts any operations that might still be running
on the device.

ncclResult_t pneeclCommAbort (ncclComm_t comm)

const char *ncclGetErrorString (ncclResult_t result)
Returns a human-readable error message.

11

RCCL Documentation, Release 0.8

const char *pnceclGetErrorString (ncclResult_t result)

ncclResult_t ncclCommGetAsyncError (ncclComm_t comm, ncclResult_t *asyncError)
Checks whether the comm has encountered any asynchronous errors.

ncclResult_t pneclCommGetAsyncError (ncclComm_t comm, ncclResult_t *asyncError)

ncclResult t neelCommCount (const ncclComm_t comm, int *count)
Gets the number of ranks in the communicator clique.

ncclResult_t pneeclCommCount (const ncclComm_t comm, int *count)

ncclResult t neeclCommCuDevice (const ncclComm_t comm, int *device)
Returns the rocm device number associated with the communicator.

ncclResult_t pnececlCommCuDevice (const ncclComm_t comm, int *device)

ncclResult_t ncelCommUserRank (const ncclComm_t comm, int *rank)
Returns the user-ordered “rank” associated with the communicator.

ncclResult_t pneclCommUserRank (const ncclComm_t comm, int *rank)

ncclResult_t ncclReduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t
datatype, ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t

stream)
Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff may be NULL
on all calls except for root device. root is the rank (not the CUDA device) where data will reside after the
operation is complete.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t pneclReduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t
datatype, ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t
stream)

ncclResult_t ncclBeast (void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t
comm, hipStream_t stream)
(deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data
resides before the operation is started.

This operation is implicitely in place.
ncclResult_t pneclBeast (void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t
comm, hipStream_t stream)

ncclResult_t ncclBroadcast (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Broadcast.

Copies count values from root to all other devices. root is the rank (not the HIP device) where data resides
before the operation is started.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t pnececlBroadcast (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t
datatype, int root, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclAl1Reduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t

datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)
All-Reduce.

12

Chapter 3. All API

RCCL Documentation, Release 0.8

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result
on each recvbuff.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t pneclAllReduce (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t
datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclReduceScatter (const void *sendbuff, void *recvbuff, size_t recvcount, nc-
clDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hip-

Stream_t stream)
Reduce-Scatter.

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that
recvbuff on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount,
which means that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

ncclResult_t pnecclReduceScatter (const void *sendbuff, void *recvbuff, size_t recvcount, nc-
clDataType_t datatype, ncclRedOp_t op, ncclComm_t comm,
hipStream_t stream)

ncclResult_t ncclAllGather (const void *sendbuff, void *recvbuff, size_t sendcount, nc-

clDataType_t datatype, ncclComm_t comm, hipStream_t stream)
All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a
size of at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

ncclResult_t pnecclAllGather (const void *sendbuff, void *recvbuff, size_t sendcount, nc-
clDataType_t datatype, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclSend (const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, nc-
clComm_t comm, hipStream_t stream)

Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the
same count from this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress
concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

ncclResult_t pneclSend (const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, nc-
clComm_t comm, hipStream_t stream)

ncclResult_t pneclRecv (void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t

comm, hipStream_t stream)
Receive.

Receive data from rank peer into recvbuff. Rank peer needs to call ncclSend with the same datatype and
the same count to this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress
concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

ncclResult_t neelRecev (void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t
comm, hipStream_t stream)

ncclResult_t nceclGather (const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Gather.

13

RCCL Documentation, Release 0.8

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount.

Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least
nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

ncclResult_t pneclGather (const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t
datatype, int root, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclScatter (const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t

datatype, int root, ncclComm_t comm, hipStream_t stream)
Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root.

Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least
nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

ncclResult_t pneeclScatter (const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t
datatype, int root, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclA11ToAll (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t

datatype, ncclComm_t comm, hipStream_t stream)
All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for send-
ing/receiving has count elements, which means that recvbuff and sendbuff should have a size of
nranks*count elements.

In-place operation will happen if sendbuff == recvbuff.

ncclResult_t pnecclAllToAll (const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t
datatype, ncclComm_t comm, hipStream_t stream)

ncclResult_t ncclGroupStart ()
Group Start.

Start a group call. All calls to NCCL until ncclGroupEnd will be fused into a single NCCL operation.
Nothing will be started on the CUDA stream until ncclGroupEnd.

ncclResult_t pneclGroupStart ()

ncclResult_t necclGroupEnd ()
Group End.

End a group call. Start a fused NCCL operation consisting of all calls since ncclGroupStart. Operations
on the CUDA stream depending on the NCCL operations need to be called after ncclGroupEnd.

ncclResult_t pneclGroupEnd ()

14 Chapter 3. All API

CHAPTER
FOUR

INDICES AND TABLES

* genindex

¢ search

15

RCCL Documentation, Release 0.8

16 Chapter 4. Indices and tables

N

NCCL_MAJOR (C macro), 9

NCCL_MINOR (C macro), 9

NCCL_PATCH (C macro), 9

NCCL_SUFFIX (C macro), 9
NCCL_UNIQUE_ID_BYTES (C macro), 9
NCCL_VERSION (C macro), 9
NCCL_VERSION_CODE (C macro), 9
ncclAllGather (C++ function), 5, 13
ncclAllReduce (C++ function), 4, 12
ncclAl1ToAll (C++ function), 5, 14
ncclBcast (C++ function), 4, 12
ncclBroadcast (C++ function), 4, 12
ncclComm_t (C++ type), 6,9
ncclCommAbort (C++ function), 3, 11
ncclCommCount (C++ function), 3, 12
ncclCommCuDevice (C++ function), 4, 12
ncclCommDestroy (C++ function), 3, 11
ncclCommGetAsyncError (C++ function), 12
ncclCommInitAll (C++ function), 3, 11
ncclCommInitRank (C++ function), 3, 11
ncclCommUserRank (C++ function), 4, 12
ncclDataType_t (C++ enum), 7, 10
ncclDataType_t::ncclBfloatl6 (C++ enumer-

ator), 8, 10

ncclDataType_t::ncclChar (C++ enumerator),
7,10

ncclDataType_t::ncclDouble (C++ enumera-
tor), 7, 10

ncclDataType_t: :ncclFloat (C++ enumerator),
7,10

ncclDataType_t::ncclFloatl6 (C++ enumera-
tor), 7, 10

ncclDataType_t::ncclFloat32 (C++ enumera-
tor), 7, 10

ncclDataType_t::ncclFloat64 (C++ enumera-
tor), 7, 10

ncclDataType_t::ncclHalf (C++ enumerator),
7,10

ncclDataType_t: :ncclInt (C++ enumerator), 7,
10

ncclDataType_t: :ncclInt32 (C++ enumerator),

INDEX

7,10

ncclDataType_t::ncclInt64 (C++ enumerator),
7,10

ncclDataType_t::ncclInt8 (C++ enumerator),
7,10

ncclDataType_t: :ncclNumTypes (C++ enumer-
ator), 8, 10

ncclDataType_t::ncclUint32 (C++ enumera-
tor), 7, 10

ncclDataType_t::ncclUint64 (C++ enumera-
tor), 7, 10

ncclDataType_t: :ncclUint8 (C++ enumerator),
7, 10

ncclGather (C++ function), 5, 13
ncclGetErrorString (C++ function), 6, 11
ncclGetUniqueId (C++ function), 3, 11
ncclGetVersion (C++ function), 6, 11
ncclGroupEnd (C++ function), 6, 14
ncclGroupStart (C++ function), 6, 14
ncclRecv (C++ function), 5, 13
ncclRedOp_t (C++ enum), 7, 10
ncclRedOp_t: :ncclMax (C++ enumerator), 7, 10
ncclRedOp_t: :ncclMin (C++ enumerator), 7, 10
ncclRedOp_t: :ncclNumOps (C++ enumerator), 7,
10
ncclRedOp_t: :ncclProd (C++ enumerator), 7, 10
ncclRedOp_t: :ncclSum (C++ enumerator), 7, 10
ncclReduce (C++ function), 4, 12
ncclReduceScatter (C++ function), 4, 13
ncclResult_t (C++ enum), 7, 10
ncclResult_t::ncclInternalkrror
enumerator), 7, 10
ncclResult_t::ncclInvalidArgument (C++
enumerator), 7, 10
ncclResult_t::ncclInvalidUsage (C++ enu-
merator), 7, 10
ncclResult_t::ncclNumResults (C++ enumer-

(C++

ator), 7, 10
ncclResult_t::ncclSuccess (C++ enumerator),
7,10

ncclResult_t::ncclSystemError (C++ enu-
merator), 7, 10

17

RCCL Documentation, Release 0.8

ncclResult_t::ncclUnhandledCudaError
(C++ enumerator), 7, 10

ncclScatter (C++ function), 5, 14

ncclSend (C++ function), 5, 13

ncclUniquelId (C++ struct), 6,9

ncclUniqueld::internal (C++ member), 9

P

pncclAllGather (C++ function), 13
pncclAllReduce (C++ function), 13
pncclAl1ToAll (C++ function), 14
pncclBcast (C++ function), 12
pncclBroadcast (C++ function), 12
pncclCommAbort (C++ function), 11
pncclCommCount (C++ function), 12
pncclCommCuDevice (C++ function), 12
pncclCommDestroy (C++ function), 11
pncclCommGetAsyncError (C++ function), 12
pncclCommInitAll (C++ function), 11
pncclCommInitRank (C++ function), 11
pncclCommUserRank (C++ function), 12
pncclGather (C++ function), 14
pncclGetErrorString (C++ function), 11
pncclGetUniqueId (C++ function), 11
pncclGetVersion (C++ function), 11
pncclGroupEnd (C++ function), 14
pncclGroupStart (C++ function), 14
pncclRecv (C++ function), 13
pncclReduce (C++ function), 12
pncclReduceScatter (C++ function), 13
pncclScatter (C++ function), 14
pncclSend (C++ function), 13

R

RCCL_BFLOAT16 (C macro), 9
RCCL_GATHER_SCATTER (C macro), 9

18 Index

	RCCL
	Introduction

	API
	Communicator Functions
	Collective Communication Operations
	Group Semantics
	Library Functions
	Types
	Enumerations

	All API
	Indices and tables
	Index

